boratory diagnostics and trends [J]. Auto Immun Rev, 2014,13:917-930.

- [2] ABRAHAMS V M, CHAMLEY L W, SALMON J E. Emerging treatment models in rheumatology: antiphospholipid syndrome and pregnancy: pathogenesis to translation [J]. Arthritis Rheumatol, 2017, 69(9):1710-1721.
- [3] 宋宁,张蜀澜,胡朝军,等. 2013 年全国 116 家实验室抗磷 脂抗体检测比对分析[J]. 中华临床免疫和变态反应杂 志,2016,10(1):28-32.
- [4] 顾丹天,夏春梅,安长新,等.47 例习惯性流产女性抗心磷 脂、抗精子及抗子宫内膜抗体的分析[J]. 新疆医科大学 学报,2013,26(3):279-280.
- [5] SACCONE G, BERGHELLA V, MARUOTTI G M, et al. Antiphospholipid antibody profile based obstetric outcomes of primary antiphospholipid syndrome: the PREG-NANTS study[J]. Am J Obstet Gynecol, 2017, 216(5): 525-537.

- [6] 张蜀澜,吴子燕,张文,等.抗磷脂综合征病态妊娠患者中 抗磷脂抗体谱的临床意义[J/CD].中华临床实验室管理 电子杂志,2017,5(4):226-231.
- [7] HOTH J J, WELLS J D, JONES S E, et al. Complement mediates a primed inflammatory response after traumatic lung injury[J]. J Trauma Acute Care, 2014, 76(3): 608-609.
- [8] 许柯青, 贠艳丽, 崔文贤. 抗磷脂抗体阳性早孕女性妊娠 早期炎性因子、补休及凝血功能检测的临床意义[J]. 广 西医科大学学报, 2017, 34(7): 1084-1086.
- [9] SHOENFELD Y, MERONI P L, GERSHWIN M E. Autoantibodies[M]. 3rd Edition. Amsterdam: Elsevier, 2014: 512-515.
- [10] 刘畅,于若寒,刘湘源. 产科抗磷脂综合征诊疗所面临的 挑战[J]. 内科急危重症杂志,2017,23(2):105-108.

(收稿日期:2018-12-06 修回日期:2019-04-02)

・临床探讨・ DOI:10.3969/j.issn.1672-9455.2019.14.027

采用 Excel 电子表格制作新生儿血液氨基酸及肉碱谱项目室内质控图^{*}

李梦秋¹,金 颖¹,吴桐菲²,刘鸿鹏³,刘 怡¹,康路路¹,宋金青¹,张 尧¹,董 慧¹,杨艳玲^{1△} 1.北京大学第一医院儿科,北京 100034;2.首都医科大学临床检验中心,北京 100034; 3.深圳爱湾医学检验实验室,广东深圳 518107

摘 要:目的 探讨利用 Excel 电子表格制作新生儿血液氨基酸及肉碱谱项目室内质控图的方法。方法 使用 Excel 表格的作图功能及 VB 代码编辑功能,设计制作出包括失控点在内的单值多点的定量质控图。结果 将靶值、1SD 值及当前批次质控数据输入数据表中,计算机可依据所有测定点绘制成质控图,图中的失控点 与在控点区分明显,便于判定。结论 利用 Excel 表格的强大功能制作适用于新生儿血液氨基酸及肉碱谱室内 项目质控图,方便且实用,对保证检验结果可靠性具有重要意义。

关键词:Excel 表格; 质控图; 新生儿; 血液氨基酸; 肉碱谱 中图法分类号:R446.19 **文献标志码:A** 文章编号:1672-9455(2019)14-2046-03

室内质控是检验工作的重要环节,决定检验结果 是否准确,质控图则是室内质控的工具。质控图可以 将抽象的数字转变为具体的图形,并且可以准确地表 达数字语言,尤其对于多规则质控,可以做到一目了 然,由于其直观、全面的特性,被广泛应用于多种临床 检验项目,并形成自动化,方便而实用。但是,目前尚 未广泛应用于新生儿血液氨基酸及肉碱谱检测仪器 数据处理系统自动化产生的质控图,本研究利用 Excel 表格的强大数据处理功能,制作适用于这两项检 测的质控图,从而方便及时地判断检验数据的可靠性 与准确性。

1 材料与方法

1.1 仪器与试剂 Waters 1525 液相串联质谱仪购

自北京京科瑞达科技有限公司;PE试剂盒由 PE 公司 提供;联想电脑(Windows10 系统)及 Microsoft Office Plus Excel 2013 软件。

1.2 数据来源 收集北京大学第一医院 2018 年 8 月新生儿血液氨基酸及肉碱谱质控数据 17 组。

1.3 方法 主要步骤为构建数据表,设定平均值、标 准差,制作单项质控图,编辑 VB 代码,串联各单项质 控图。

1.3.1 建立质控数据表 以北京大学第一医院 2018 年8月新生儿血液氨基酸及肉碱谱质控数据为例。 (1)新建 Excel 表格,命名为"新生儿氨基酸及肉碱 谱——8月质控数据"。(2)双击左下方"Sheet1",改 名为"质控信息",表内依次输入试剂盒名称、试剂盒

^{*} 基金项目:首都卫生发展科研专项项目(首发 2016-1-2021);国家重点研发计划项目(2017 YFC1001704)。

[△] 通信作者, E-mail: organic. acid@126. com。

批号、试剂盒有效期、试剂盒启用日期、检测日期、质 控结果、失控情况、失控原因分析、失控处理措施,每 批次质控样本。(3)双击"Sheet2",改名为"低控 (LC)",A1~Z1分别输入检测项目,A2、M2输入"+ 3SD",A3、M3输入"+2SD",A4、M4输入"+1SD", A5、M5输入"LC靶值",A6、M6输入"1SD",A7~ A9、M7~M9分别输入"-1SD""-2SD""-3SD";

将本实验室设定的靶值及 1SD 填于表内,并根据靶 值及 1SD,利用 Excel 公式计算出相应±2SD 及± 3SD,见图 1。(4)将每批次质控数据列于表中,见图 2。(5)同理,"Sheet3",改名为"高控(HC)",分别将高 控(HC)靶值、1SD、±1SD、±2SD、±3SD 及质控数 据列于表内。

2	A	B	C	D	E	F	G	H	I	J	K	L	M	N	0
1	Sample Name	HC- Ala	HC- Cit	HC- Gly	HC-Leu	HC- Met	HC- Phe	HC- Pro	HC-SA	HC- Tyr	HC- Val		Sample Name	HC-C0	HC-C2
2	+ 3SD	2346	389	3701	1105	532	911	2102	25.07	1560	1360		+ 3SD	298.00	182.40
3	+ 2SD	2124	353	3353	1005	484	828	1911	22.58	1418	1234		+ 2SD	270.00	165.60
4	+ 1SD	1902	317	3005	905	436	745	1720	20.09	1276	1108		+ 1SD	242.00	148.80
5	HC靶值	1680.00	281.00	2657.00	805.00	388.00	662.00	1529.00	17.60	1134.00	982.00		HC靶值	214.00	132.00
6	1sd	222.00	36.00	348.00	100.00	48.00	83.00	191.00	2.49	142.00	126.00		1sd	28.00	16.80
7	- 1SD	1458	245	2309	705	340	579	1338	15.11	992	856		- 1SD	186.00	115.20
8	- 2SD	1236	209	1961	605	292	496	1147	12.62	850	730		- 2SD	158.00	98.40
9	- 3SD	1014	173	1613	505	244	413	956	10.13	708	604		- 3SD	130.00	81.60

图1 质控图数据(部分)

	в	C	D	E	F					
1	LC- Ala	LC- Cit	LC- Gly	LC-Leu	LC-Met					
2	1144	132	1538	519	164					
з	1038	120	1393	472	149					
4	932	108	1248	425	134					
5	826	96	1103	378	119					
6	106.00	12.00	145.00	47.00	15.00					
7	720	84	958	331	104					
8	614	72	813	284	89					
9	508	60	668	237	74					
10										
11	」试低浓度质控血片测定值									
12		测定值 (µmol/L)								
13	样品序号	LC- Ala	LC- Cit	LC- Gly	LC-Leu					
14	1	706.43	93.45	1031.89	310.56					
15	2	778.43	98.67	1271.71	325.18					
16	3	876.15	102.64	1247.39	356.16					
17	4	769.85	96.18	1083.72	328.91					
18	5	923.61	111.65	1166.58	389.18					

图 2 质控样本数据(部分)

 1.3.2 构建质控图辅助表 (1)单击左下角"+",添 加一个表格,改名为"辅助页"。"A1"输入"样本序 号", "B1~G1"单元格开始, 依次输入 LC-Ala、+ 3SD、+2SD、LC-靶值、-2SD、-3SD,"H1~M1"是 下一个检测项目,依次输入,直到最后一个检测项目 输入完成。(2)在"样本序号"下方输入序号,"A2"处 输入1,使序号与"低控(LC)"页面中的质控数据列保 持一致,本次样本序号设为1~50。(3)因在"低控 (LC)"页面中,"LC-Ala"的首行数据位于"C14",因此 在"B2"单元格输入"=IF(ISBLANK('低控(LC)'! C14),NA(),'低控(LC)'! C14)",输入完成后按"回 车"键,此单元格便引入"低控(LC)"页面"C14"单元 格的数据(数据为空时显示"#N/A"),"C2"单元格输 入"='低控(LC)'! \$B\$2",输入完成后按"回车" 键,此单元格将引入"低控(LC)"页面"B2"单元格的 数据。以此类推,"D2"输入"='低控(LC)'! \$B \$3","E2"输入"=′低控(LC)′!\$B\$5","F2"输入 "= ' 低 控 (LC) ' ! \$ B \$ 8", "G2" 输 入 " = ' 低 控 (LC)'! \$B\$9"。选中第二行已输入的数据,鼠标 移至选中区域右下角,当鼠标箭头变为黑色十字时, 双击填充,此时,所有有序号的行,都将自动填充数 据。数据见图 3。此时,"LC-Ala"的辅助数据构建完 毕,其他项目及高控项目均用此方法构建辅助数据。

样品序号	LC- Ala	+ 3SD	+ 2SD	LC靶值	- 2 <i>SD</i>	- 3 <i>SD</i>		
1	703.63	1144	1038	826	614	508		
2	778.43	1144	1038	826	614	508		
3	876.15	1144	1038	826	614	508		
4	769.85	1144	1038	826	614	508		
5	923.61	1144	1038	826	614	508		
图 3 质控图辅助页(部分)								

1.3.3 设计质控图 (1)添加表格,改名为"质控 图"。(2)以 LC-Ala 为例,选中"LC-Ala"的辅助数据 "B1:G51",选择"插入"菜单中的"折线图"。见图 4。 (3)修改图表格式,双击"图表标题"更改为"LC-Ala"; 选中图中任意数据线,双击,右侧将出现"设置数据系 列格式"可设置线条颜色、宽度;"标记"的参数设置 为:无。(4)将所制作的图表分别修改为各自对应的 名称。(5)选择任意图表,使用快捷键"CTRL+A", 选中所有图表,剪切复制到"质控图"页面,并根据顺 序排列整齐。

图 4 质控图(部分)

1.3.4 自动更新坐标 纵坐标的"最小值"应为"-3SD"值,"最大值"应为"+3SD"值,而且当在数据页 面更新"靶值""1SD"值后,"±3SD"值、"±2SD"值、 "最大值""最小值"自动随之改变。此时,在Excel 表 格下方"质控图"名称处点击鼠标右键,选择"查看代 码",打开"代码编辑器",编辑代码到右侧代码编辑 栏,见图 5。完成后点击左上角保存按钮,此时会弹出 对话框,选择"否",弹出"另存为"对话框,在保存类型 中选择"Excel 启用宏的工作簿(*.xlsm)"并保存。 ReChart

至此,每次打开"质控图"页面时,都将重新计算每个 检测项目质控图的纵坐标。 Private Sub Worksheet_Activate()

End Sub Sub ReChart()

rechart2 "LC- Ala", "B"

rechart2 "LC- C18", "Z" rechart2 "HC- Ala", "B"

rechart2 "HC- C18", "Z"

End Sub

Private Sub rechart2(ChartName As String, Lie As String) Dim Hrange As String, Dim Srange As String,

Hrange = Lie & "9" Srange = Lie & "2"

```
If Left(ChartName, 1) = "L" Then
ActiveSheet.ChartObjects(ChartName).Activate.
ActiveChart.Axes(xlValue).Select
With ActiveChart.Axes(xlValue).
.MinimumScale = Sheets("低控(LC)").Range(Hrange)
.MaximumScale = Sheets("低控(LC)").Range(Srange)
End With
Else
```

ActiveSheet.ChartObjects(ChartName).Activate ActiveChart.Axes(xlValue).Select With ActiveChart.Axes(xlValue) ..MinimumScale = Sheets("高控(HC)").Range(Hrange) .MaximumScale = Sheets("高控(HC)").Range(Srange) End With

End If

```
End Sub
```


注:①为 LC-Ala;②为+3SD;③为+2SD;④为 LC 靶值;⑤为-2SD;⑥为-3SD;⑦为 HC 靶值;A 为 LC-Ala;B为 HC-Ala

图 6 新生儿血液代谢筛查项目质控图(部分)

2 结 果

将靶值、1SD 值及当前批次质控数据输入数据表

中,采用 VB 编辑器计算机可依据所有测定点绘制成 质控图,将项目繁多的新生儿血液氨基酸及肉碱谱质 控图绘制于同一个 Excel 文件中,并且可以随着靶值 和标准差的改变自动更新,失控点与在控点区分明 显,一目了然,便于判定。见图 6。

3 讨 论

对质控品检测结果的评价主要依靠质控图实现^[1]。依据《医疗机构临床实验室管理办法》要求,医 疗机构临床实验室应当对开展的临床检验项目进行 室内质控,绘制质控图,出现质量失控现象时,应当及 时查找原因,采取纠正措施,并详细记录^[2]。

国家卫生健康委员会妇幼司联合中国出生缺陷 干预救助基金会在 29 省(区、市)开展出生缺陷(遗传 代谢病)救助项目,其中48种可申请救助的病种都可 以通过串联质谱检测,因此,新生儿血液氨基酸及肉 碱谱检测必将得到大面积推广。但是目前尚未广泛 应用自动化生成质控图的操作系统,而以往则多用 Excel 表格绘制单一项目的质控图^[3-5],本质控图结合 新生儿血液代谢筛查项目繁多的特点,特引用 VB 编 辑器,制作了适用于这两项实验项目的质控图,本图 制作完成后,可作为该实验项目的模板,如果更换了 试剂盒的批号,重新设定了靶值及标准差,可将此 Excel 表另存为新的文件后,直接将新的靶值及 1SD 输 入对应的位置,所有项目的质控图的靶值线及± 2SD、±3SD 线将自动更改;每批次实测的质控数据 直接输入"低控(LC)""高控(HC)",则对应的坐标点 将自动坐落到质控图上。本质控图所采用的 VB 代 码,稍加变动即可应用于其他项目,由此可见,用 Excel 表格制作新生儿血液代谢筛查是非常直观且实用 的方法。

参考文献

- [1] 杨惠,王成彬.临床实验室管理[M].北京:人民卫生出版 社,2015:137.
- [2] 中华人民共和国卫生和计划生育委员会. 医疗机构临床 实验室管理办法[EB/OL]. http://www.nhc.gov.cn/ yzygj/s3577/200804/d3281df051d44badbd45cf12fe95a28e.shtml,2006-03-06/2018-12-20.
- [3] 肖秀林,唐全.利用 Excel 软件制作完善的 L-J 质控图 [J].现代检验医学杂志,2007,22(2):112.
- [4] 林俊填,伍伟健. Microsoft Excel 在血液检验质控中的应 用[J/CD].转化医学电子杂志,2014,29(2):72-73.
- [5] 徐永平,陈国祥.利用 Excel 2007 制作生化检验室内质控 图系统[J].检验医学与临床,2010,7(19):2121-2123.