・论 著・

尼洛替尼以 PU.1 非依赖性调节 K562 细胞活性*

李有强 1,2 ,曾建明 $^{1\triangle}$,姚子涛 3 ,肖 倩 1 ,王丽娜 1 ,李 沫 1 (1.广东省中医院检验科,广州 510006; 2.广州中医药大学,广州 510405; 3.广东医学院检验学院,广东东莞 523808)

【摘要】目的 研究尼洛替尼对 K562 细胞活性和转录因子 PU.1 的影响。方法 以不同浓度的尼洛替尼分别处理 K562 细胞 48 h后,采用 CCK-8 法观察 K562 细胞增殖活性的变化;采用 Western blot 法检测 PU.1 的表达情况。结果 CCK-8 法显示细胞存活率随尼洛替尼浓度的升高而下降,尼洛替尼对 K562 细胞株的半数抑制量 (IC50)为 51.9 nmol/L;Western blot 法显示尼洛替尼处理后 PU.1 的蛋白表达水平未见明显差异(P>0.05)。结论 尼洛替尼可抑制 K562 细胞活性,但其作用方式非依赖于 PU.1。

【关键词】 尼洛替尼; K562 细胞; Bcr-Abl; PU.1

DOI: 10. 3969/j. issn. 1672-9455. 2015. 06. 010 文献标志码: A 文章编号: 1672-9455(2015)06-0745-02

Nilotinib for regulating K562 cell viability in PU. 1-independent manner* LI You-qiang 1.2, ZENG Jian-ming 1.2, YAO Zi-tao³, XIAO Qian¹, WANG Li-na¹, LI Mo¹ (1. Department of Clinical Laboratory, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510006, China; 2. Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China; 3. Institute of Laboratory Medicine, Guangdong Medical College, Dongguan, Guangdong 523808, China)

(Abstract) Objective To investigate the effect of nilotinib on the viability and transcription factor PU. 1 in K562 cells. Methods K562 cells were treated with different concentrations of nilotinib for 48 h; the CCK-8 method was adopted to observe the change of K562 cells proliferation viability; the expression of PU. 1 was determined by using Western Blot. Results The CCK-8 method showed that the survival rate of K562 cells was decreased with the nilotinib concentration increase. The 50% inhibitory concentration(IC50) of niloinib to K562 cells was 51.9 nmol/L; the Western blot test indicated that the expression of PU. 1 in K562 cells had no significant difference after niloinib treatment(P>0.05). Conclusion Nilotinib could inhibit the viability of K562 cells in a PU. 1-independent manner.

(Key words) Nilotinib; K562 cells; Bcr-Abl; PU. 1

尼洛替尼是人工合成的新型酪氨酸激酶抑制剂(TKI),可竞争结合断裂点簇集区-艾贝尔逊白血病病毒(Ber-Abl)融合蛋白三磷腺苷(ATP)结合位点,抑制 Ber-Abl 蛋白的酪氨酸激酶活性,阻断下游多条信号传导通路,达到有效治疗慢性粒细胞白血病(CML)的目的^[1]。但由于信号传导通路的复杂性,尼洛替尼通过 Ber-Abl 调节下游信号通路的机制尚未完全明确。PU.1 蛋白是调控粒系分化的转录因子,不仅在造血干细胞向髓系分化的早期过程中起作用,还与细胞增殖活性有关。有研究表明,Ber-Abl 在 mRNA 翻译水平通过多聚胞嘧啶结合蛋白 E2(hnRNP E2)抑制转录因子 C/EBPα 的表达^[2],而PU.1与 C/EBPα 有协同作用,可共同调节粒细胞分化增殖^[3]。因此,本研究拟探讨尼洛替尼作用于 K562 细胞株后对 PU.1的影响,进一步探索尼洛替尼治疗 CML 的分子机制。

1 资料与方法

- 1.1 细胞株来源 K562细胞株由南方医科大学附属珠江医院血液病实验室提供。
- 1.2 仪器与试剂 尼洛替尼由诺华制药公司提供。CCK-8 试剂盒购自日本同仁化学研究所;细胞裂解液 RIPA 和电化学 发光(ECL)显影试剂购自美国 Pierce 公司;丙烯酰胺和双丙烯酰胺均购自美国 Sigma 公司。二喹啉甲酸(BCA)蛋白定量试剂盒购自上海百赛生物技术有限公司;聚偏二氟乙烯膜(PVDF膜)和磷酸盐缓冲液(PBS)购自上海生工;蛋白 Marker购自北京赛百盛公司。PU.1单克隆抗体和β-actin单克隆抗体均购自美国 CST 公司。

1.3 方法

- 1.3.1 K562 细胞株的培养 将复苏后的 K562 细胞株在含有终浓度为 10%胎牛血清的 RPMI1640 培养基中,于 37 $^{\circ}$ $^{\circ}$ $^{\circ}$ 饱和湿度、5%CO₂ 的培养箱中培养,每 $3\sim4$ 天换液传代,细胞接种密度为每毫升 1×10^5 个。
- 1.3.2 CCK-8 法检测细胞增殖 将对数生长期的 0.5×10^4 K562 细胞接种于 96 孔板 (每孔总体积为 $200~\mu$ L),加入不同 终浓度的尼洛替尼 (0~100 nmol/L)作用 48~h,相同体积的二甲基亚砜 (DMSO)为阴性对照组,空白组为不含细胞和尼洛替尼,每组设 5 个复孔。37 ℃、5% CO₂、饱和湿度下共计培养 48~h后,取出 96 孔板,每孔加 $10~\mu$ L 的 CCK-8 溶液,培养箱中继续培养 4~h后,酶标仪下测定各孔在 450~nm 波长处的吸光度值 (A450 值)。按公式计算存活率:存活率 (%) = (A 实验组—A 空白组)/(A 对照组—A 空白组)×100%;根据公式计算半数抑制量 (IC50):IC50= $lg^{-1}[Xm-i(\Sigma P-0.5)]^{[4]}$ 。 Xm为设计的最大浓度的对数值,i 为各浓度倍比浓度的对数值, ΣP 为各组生长抑制率之和,0.5~h经验常数。
- 1.3.3 Western blot 检测 PU.1的蛋白表达 用 RIPA 细胞裂解液裂解待测细胞,提取总蛋白质,用 BCA 法测蛋白含量。等量蛋白质采用 SDA-PAGE 垂直电泳进行分离,然后转至 PVDF 膜上,用封闭液[(含5%牛血清蛋白(BSA)的磷酸盐吐温缓冲液(PBST)]4 ℃下封闭1h后,加入 PU.1单克隆抗体(1:1000)4 ℃孵育过夜,室温下洗膜后加相应辣根过氧化物酶(HRP)偶联羊抗兔二抗(1:4000)室温孵育1h,ECL 显

^{*} 基金项目:广东省自然科学基金(S2012010008916)。

影。以 β-actin 作为内参对照。

1.4 统计学处理 应用 SPSS 17.0 统计软件进行数据处理和统计学分析,计量资料以 $\overline{x} \pm s$ 表示,组间比较采用 t 检验;计数资料以百分率表示,组间比较采用 χ^2 检验;以 α =0.05 为检验水准,P<0.05 为差异有统计学意义。

2 结 果

2.1 K562细胞增殖活性 比较各处理组细胞增殖抑制率, CCK8法检测结果显示尼洛替尼对 K562细胞增殖有明显的抑制作用,随尼洛替尼浓度的增加,K562细胞增殖明显下降。尼洛替尼对 K562细胞株的 IC50为 51.9 nmol/L。见表 1。

表 1 不同浓度尼洛替尼对 K562 细胞增殖活性的影响

组别	A450 值(〒±s)	存活率(%)	χ^2	P
阴性对照组(DMSO)	2.58 ± 0.14	100.00	_	_
处理组(nmol/L)				
0.0	2.56 ± 0.16	99.42	0.03	>0.05
5.0	2.36 ± 0.08	91.82	0.43	>0.05
10.0	2.51 ± 0.15	97.48	0.13	>0.05
15.0	2.45 ± 0.23	95.21	0.25	>0.05
20.0	2.55 ± 0.04	99.17	0.04	>0.05
25.0	2.49 ± 0.06	96.72	0.17	>0.05
30.0	2.49 ± 0.08	96.70	0.17	>0.05
35.0	2.56 ± 0.15	99.26	0.04	>0.05
40.0	2.19 ± 0.09	84.89	0.82	>0.05
45.0	2.12 ± 0.15	82.33	0.97	>0.05
51.9	1.44 ± 0.08	55.92	2.83	<0.05
55.0	0.48 ± 0.03	18.54	6.87	<0.05
60.0	0.41 ± 0.01	15.81	7.27	<0.05
100.0	0.40 ± 0.05	15.53	7.31	<0.05

注: χ^2 、P分别表示各处理组与阴性对照组比较的统计量;一表示无数据。

2.2 Western blot 检测 PU.1 蛋白表达结果 不同浓度的尼洛替尼 (40.0、45.0、51.9 nmol/L)作用于 K562 细胞 48 h后 PU.1 的蛋白表达量与尼洛替尼处理后比较未见明显差异,差异无统计学意义(P>0.05),见图 1。

注: $1\sim3$ 号泳道分别为 40.0,45.0,51.9 nmol/L 尼洛替尼;4 号泳 道为 DMSO 对照组。

图 1 尼洛替尼对 PU.1 蛋白表达的影响

3 讨 论

分子靶向药物尼洛替尼能够特异性地竞争抑制 Bcr-Abl 酪氨酸激酶活性,且具有较高的反应率和良好的耐受性,已成为 CML 的一线治疗方案。相对于第 1 代酪氨酸激酶抑制剂,第 2 代尼洛替尼具有选择性更强、耐药率更低的优势[1]。同时,由于酪氨酸激酶能催化多种底物蛋白质酪氨酸残基磷酸化,进而启动下游不同的信号转导分子。因此,寻找 Bcr-Abl 的下游作用蛋白,对进一步阐明尼洛替尼治疗 CML 的分子机制具有重要意义。然而,本实验发现采用不同浓度的尼洛替尼处理 K562 细胞后,与 K562 细胞增殖和分化密切相关的转录因子 PU. 1 的表达量并未出现明显差异,表明尼洛替尼对 K562 细胞的调节作用非依赖于 PU. 1。

PU.1 是 Ets 转录因子家族的成员之一,其具有的"螺旋转角-螺旋"结构的 DNA 结合区能识别 1 个富含嘌呤 GGAA/T(PU box) 基因序列的核心 DNA 元件,并与之结合,故名PU.1^[5]。PU.1 不仅在造血干细胞向髓系分化的早期过程中起作用,还在后续的髓细胞和 B 淋巴细胞的增殖分化中发挥

作用。PU.1 通过与造血相关基因启动子上的 PU.1 位点特异性结合,调节靶基因转录表达,如巨细胞集落刺激因子受体 (M-CSFR)、粒细胞集落刺激因子受体 (G-CSFR)、CD11b、粒细胞过氧化物酶、白细胞介素-7 (IL-7)、IL-18 和环氧化酶 2 (COX2)等。同时,CML 转归与 PU.1 基因功能的恢复有关,PU.1 基因功能恢复是 CML 治疗好转的一个重要指标^[6-8]。

目前,有研究表明 PU.1 与转录因子 C/EBP α 存在协同作用,可共同调节粒细胞分化^[3],而且 Bcr-Abl 可通过 hnRNP E2 抑制 C/EBP α 的表达^[2]。另外,在髓系细胞分化过程中,PU.1 的发挥作用比 C/EBP α 更早,且在干扰素- α (IFN- α)或 STI571 治疗好转的 CML 患者身上发现 PU.1 表达上调^[9]。另有研究表明,降低小鼠 PU.1 基因的表达能够导致小鼠白血病的发生。因此本研究探讨了在 K562 细胞株中,Bcr-Abl 抑制剂尼 洛替尼是否对 PU.1 的表达有调节作用。在本实验中,通过 CCK-8 法探索尼洛替尼对 K562 细胞株增殖活性的影响,发现随着药物浓度的升高,细胞存活率下降,说明尼洛替尼作用于 K562 细胞后细胞增殖活性发生改变,可促进细胞的死亡。另外,Western blot 检测显示尼洛替尼不影响 K562 细胞中 PU.1 的表达,表明尼洛替尼未通过 Bcr-Abl 调节 PU.1 的表达,证实转录因子 PU.1 并不是 Bcr-Abl 的作用底物。

本实验阐明尼洛替尼可明显影响 K562 细胞株的活性,但 其作用方式并不依赖于转录因子 PU.1,对进一步探索 Ber-Abl下游相关分子具有一定的借鉴作用。

参考文献

- [1] Weisberg E, Manley P, Mestan J, et al. AMN107 (Nilotinib): a novel and selective inhibitor of BCR-ABL[J]. Br J Cancer, 2006, 94(12): 1765-1769.
- [2] Ferrari-Amorotti G, Keeshan K, Zattoni M, et al. Leukemogenesis induced by wild-type and STI571-resistant BCR/ABL is potently suppressed by C/EBPalpha[J]. Blood, 2006, 108 (4):1353-1362.
- [3] Dahl R, Walsh JC, Lancki D, et al. Regulation of macrophage and neutrophil cell fates by the PU. 1:C/EBPalpha ratio and granulocyte colony-stimulating factor [J]. Nat Immunol, 2003, 4(10):1029-1036.
- [4] 赵荣荣,赵瑶,张仕状.肿瘤细胞状态对检测壁虎活性单体 IC50 的影响[J]. 潍坊医学院学报,2012,34(1):18-20.
- [5] Moreau-Gachelin F. Spi-1/PU. 1: an oncogene of the Ets family [J]. Biochim Biophys Acta, 1994, 1198(2-3): 149-163.
- [6] Ito T, Nishiyama C, Nakano N, et al. Roles of PU. 1 in monocyte-and mast cell-specific gene regulation; PU. 1 transactivates CIITA pIV in cooperation with IFN-γ[J]. Int, Immunol, 2009, 21(7):803-816.
- [7] Kueh HY, Champhekar A, Nutt SL, et al. Positive feedback between PU. 1 and the cell cycle controls myeloid differentiation[J]. Science, 2013, 341(6146):670-673.
- [8] Kastner P, Chan S. PU. 1:a crucial and versatile player in hematopoiesis and leukemia [J]. Int J Biochem Cell Biol, 2008, 40(1):22-27.
- [9] Albajar M, Gutierrez P, Richard C, et al. PU. 1 expression is restored upon treatment of chronic myeloid leukemia patients[J]. Cancer Lett, 2008, 270(2); 328-336.

(收稿日期:2014-10-11 修回日期:2014-12-29)