绵阳市 $0\sim14$ 岁人群维生素 D 水平调查

刘运双,薛冰蓉,曾 平,杨渝伟(四川省绵阳市中心医院检验科 621000)

【摘要】目的 了解绵阳市 $0\sim14$ 岁人群维生素 D(VitD) 营养状况。方法 调查对象为 2 564 例在绵阳市中心医院门诊就诊的 $0\sim14$ 岁人群,用电化学发光法测定其血清 25-羟维生素 D[25(OH)D],对结果进行统计学分析。结果 2 564例 $0\sim14$ 岁人群 25(OH)D 为 (30.63 ± 12.78) ng/mL,最低值为 3.00 ng/mL,最高值为 70.00 ng/mL。VitD 缺乏 574 例,占 22.4%; VitD 不足 744 例,占 29.0%; VitD 充足 1 246 例,占 48.6%。 男性和女性的 VitD 水平差异无统计学意义 (P>0.05)。 2 岁以后,随着年龄的增加,VitD 水平逐渐降低,VitD 缺乏率逐渐升高。 $1\sim2$ 岁为 VitD 水平峰值阶段。结论 绵阳市 $0\sim14$ 岁人群 VitD 水平较低,6 岁以后 VitD 缺乏情况更加严重。因此,应该定期进行 VitD 营养状况的调查,增加孩子户外活动时间,及时补充 VitD。

【关键词】 维生素 D; 25-羟维生素 D; 绵阳市; 0~14 岁

DOI: 10. 3969/j. issn. 1672-9455. 2014. 10. 015 文献标志码: A 文章编号: 1672-9455(2014)10-1336-03

Investigation on vitamin D levels in children aged from 0 to 14 years old in Mianyang city LIU Yun-shuang, XUE Bing-rong, ZENG Ping, YANG Yu-wei (Clinical Laboratory, Mianyang Central Hospital, Miangyang, Sichuan 621000, China)

[Abstract] Objective To investigate the nutritional status of vitamin D (VitD) in children aged from 0 to 14 years old in Mianyang city. Methods Electrochemiluminescence assay was used to measure serum levels of 25-hydroxyvitamin D [25(OH)D] in 2 564 children aged from 0 to 14 years old. The results were statistically analyzed. Results The average level of 25(OH)D was (30. 63±12.78) ng/mL, the minimum value was 3.00 ng/mL, and the maximum value was 70.00 ng/mL. Among 2 564 cases,574(22.4%) cases were deficient of 25(OH)D,744(29.0%) cases were relative deficient, and 1 246(48.6%) cases were sufficient. There were no statistical difference between males and females (P > 0.05). Level of 25(OH)D was highest in 1-2 years old group. Level of 25(OH)D decreased and percentages of deficiency of VitD increased with age after 2 years old. Conclusion Level of 25(OH) D might be low in children aged from 0 to 14 years old, and deficiency of VitD might be serious in children aged from 7 to 14 years old. Regular investigation of VitD, outdoor activities and additional VitD supplementation could be necessary.

(Key words) vitamin D; 25-hydroxyvitamin D; Mianyang city; 0-14 years old

维生素 D(VitD)是一种脂溶性维生素,其主要的生理功能是维持血液中钙和磷的正常浓度,有助于钙、磷以骨盐的形式沉积在骨组织上,促进骨骼生长。在儿童的生长发育、骨骼健康及免疫调节等方面发挥着重要的作用。目前,国内关于0~14岁人群 VitD 营养状况的报道较少,作者对绵阳市该年龄段人群进行了 VitD 营养状况的调查,现报道如下。

1 资料与方法

- 1.1 一般资料 2013 年 6~8 月来本院门诊和保健门诊就诊的患者,排除近期感染者、慢性病患者和已经诊断为佝偻病并正在使用 VitD 制剂治疗者,总计 2 564 例,其中女 1 012 例,男 1 552 例,年龄 $0\sim14$ 岁。
- 1.2 仪器和试剂 瑞士罗氏(Roche)公司 cobas e601 电化学 发光仪及其配套试剂、校准物和质控物。试剂测定原理为竞争法,用 VitD 结合蛋白作为捕获蛋白,可以测定总 25-羟维生素 D[25(OH)D]。
- 1.3 标本 用美国 BD 公司制造的含有分离胶的真空采血管 采集静脉血液,按照相关要求离心分离血清。
- 1.4 方法 每天测定两个水平的质控物,质控结果满足相关质量要求后测定标本。按照不同年龄段测定该人群 25(OH)D 分布和营养状况。
- 1.5 VitD 营养状况判断标准 采用国际学术机构一致认可

的标准评估 VitD 营养状况^[1-6]。(1) VitD 缺乏:≪20 ng/mL; (2) VitD 不足:20 ng/mL≪VitD≪30 ng/mL;(3) VitD 充足(理想水平):30 ng/mL≪VitD≪150 ng/mL;(4) VitD 中毒 ≥150 ng/mL。

1.6 统计学处理 采用 SPSS17.0 统计软件进行分析,计量资料采用 $\overline{x}\pm s$ 表示,两组间比较采用独立样本 t 检验,多组比较采用方差分析。计数资料采用率表示,多组间比较采用 χ^2 检验,以 P<0.05 为差异有统计学意义。

2 结 果

2.1 血清 25(OH)D 分布和营养状况 2564 例 $0\sim14$ 岁人群 25(OH)D 为 (30.63 ± 12.78) ng/mL,最低值为 3.00 ng/mL,最高值为 70.00 ng/mL。VitD 缺乏人数占 22.4%,VitD 缺乏和不足者达到 51.4%,VitD 充足者不到总体的一半。见表 1。

表 1 0 \sim 14 岁人群 25-(OH)D 分布和营养状况

VitD 营养状况	n(%) —	25-(OH)D(ng/mL)			
		$\overline{x} \pm s$	最小值 最大值		
缺乏	574(22.4)	14.70±3.84	3.00 19.80		
不足	744(29.0)	25.07 ± 2.84	20.01 29.94		
充足	1 246(48.6)	41.30 ± 8.67	30.00 70.00		
总体	2 564(100.0)	30.63 ± 12.78	3.00 70.00		

作者简介:刘运双,男,专科,副主任医师,主要从事临床化学工作。

2.2 不同年龄段 25-(OH)D 分布和营养状况 2 岁以后,随 着年龄的增加 25-(OH)D 水平逐渐降低,VitD 缺乏率逐渐升 高。 $1\sim2$ 岁为 25-(OH)D 水平峰值阶段, VitD 缺乏率也最低 (1%)。不同年龄组的 25-(OH)D 分布和营养状况见表 2。

表 2	不同年龄	25-(OH)	D 分布和营养状况
-----	------	---------	-----------

年龄(岁)		25-(OH)D(ng/mL)		25-(OH)D 营养状况[n(%)]			
	n –	$\overline{x} \pm s$	最小值	最大值	缺乏	不足	充足
<1	622	33.50 ± 14.98	3.00	70.00	138(22.2)	112(18.0)	372(59.8)
$1\sim <2$	404	41.36 \pm 10.62	12.90	69.44	4(1.0)	50(12.4)	350(86.6)
2~<3	236	37.96 ± 10.12	11.03	68.52	10(4.2)	36(15.3)	190(80.5)
3~<4	170	32.01 ± 9.19	6.02	63.66	14(8.2)	54(31.8)	102(60.0)
4~<5	166	28.95 ± 8.77	11.28	57.21	18(10.8)	82(49.4)	66(39.8)
5~<6	138	24.95 ± 7.40	8.98	40.26	38(27.5)	66(47.8)	34(24.6)
6~<7	182	23.77 ± 6.78	7.29	44.56	44(24.2)	104(57.1)	34(18.7)
7~<8	118	24.59 ± 8.45	10.25	62.01	34(28.8)	60(50.8)	24(20.3)
8~<9	92	23.00 ± 6.08	10.77	36.88	28(30.4)	48(52.2)	16(17.4)
9~<10	84	23.70 ± 7.56	11.67	39.84	32(38.1)	34(40.5)	18(21.4)
10~<11	104	20.49 ± 7.40	9.94	36.35	60(57.7)	26(25.0)	18(17.3)
11~<12	88	21.99 ± 7.51	7.95	41.04	42(47.7)	34(38.6)	12(13.6)
12~<13	80	18.93 ± 6.00	6.43	30.90	54(67.5)	22(27.5)	4(5.0)
13~14	80	17.94 ± 8.20	7.35	39.62	58(72.5)	16(20.0)	6(7.5)

2.3 不同性别 25-(OH)D 分布和营养状况 男性和女性的 25-(OH)D 水平差异无统计学意义(P>0.05), VitD 缺乏率、不足率和充足率在不同性别之间差异亦无统计学意义(P>0.05)。见表 3。

表 3 不同性别 25-(OH)D 分布和营养状况

性别 n		25-(OH)D	25-(OH)D 营养状况[n(%)]			
	n	$(\overline{x} \pm s, ng/mL)$	缺乏	不足	 充足	
女	1 012	31.1 ± 13.1	222(21.9)	294(29.1)	496(49.0)	
男	1 552	30.3 \pm 12.5	352(22.7)	450(29.0)	750(48.3)	

2.4 0~6 岁人群 25-(OH)D 分布和营养状况 1 918 例 0~6 岁人群 25-(OH)D 水平为(33. 64 ± 12.75) ng/mL, VitD 缺乏率为 13. 9%。见表 4。

表 $4 \quad 0 \sim 6$ 岁人群 25-(OH)D 分布和营养状况

VitD	n(%)	25-(OH)D(ng/mL)			
营养状况	n(/0) —	$\overline{x} \pm s$	最小值	最大值	
缺乏组	266(13.9)	13.96±4.38	3.00	19.80	
不足组	504(26.3)	25.26 ± 2.86	20.03	29.94	
充足组	1 148(59.8)	41.87 ± 8.68	30.00	70.00	
总体	1 918(100.0)	33.64 \pm 12.75	3.00	70.00	

2.5 7~14 岁人群 25-(OH)D 分布和营养状况 646 例 7~14 岁人群 25-(OH)D 水平为(21.71±7.69)ng/mL,VitD 缺乏率为 47.7%。见表 5。

表 5 $7\sim14$ 岁人群 25-(OH)D 分布和营养状况

VitD 营养状况	n(%)	25-(OH)D(ng/mL)			
VIID 营养状况	$n(\gamma_0)$	$\overline{x} \pm s$	最小值	最大值	
缺乏组	308(47.7)	15.31 ± 3.18	6.43	19.66	
不足组	240(37.2)	24.67 ± 2.75	20.01	29.88	
充足组	98(15.1)	34.54 ± 5.00	30.00	62.01	
总体	646(100.0)	21.71 ± 7.69	6.43	62.01	

3 讨 说

VitD通过作用于细胞核内的特异性受体,受体与配体相结合形成激素-受体复合物,再与细胞核内的 VitD 反应元件相结合,激活或抑制含有 VitD 反应元件的基因,从而影响 DNA的转录,发挥生物学作用。这是 VitD 缺乏引起一系列病理生理改变的基础^[7]。人体自身合成的 VitD。和食物来源的 VitD。经血液循环进入肝脏,在 VitD-25-羟化酶作用下转化为 25-羟维生素 D。和 25-羟维生素 D。,总称为 25 (OH) D。 25(OH) D主要在肾脏经 25(OH) D-1 α 羟化酶的催化下转化成有生理活性的 1,25-二羟基维生素 D^[8]。25(OH) D 在人体内的半衰期长(3 周),浓度较高且稳定,能够反映食物摄入和自身合成的 VitD 总量及 VitD 的转化能力^[9]。因此,25 (OH) D 是评估 VitD 营养状态的最佳指标^[1,9-10]。

VitD 缺乏会导致儿童佝偻病、成人骨质疏松症、软骨症、肌无力,会增加老年人跌倒和骨折的风险。近年来的研究发现,VitD 还与自身免疫疾病、糖尿病、心血管病、肿瘤等疾病的发生相关[1.9-12]。在全球,VitD 缺乏十分常见,超过 10 亿人缺乏 VitD,这与年龄、种族、肤色、生活习惯等有关[1]。

国内关于 6 岁以下人群 VitD 营养状况的报道较多,并且都发现,在 2~3 岁以后,随着年龄增加,VitD 水平逐渐降低,VitD 缺乏率逐渐升高[13-20]。本调查结果显示,在 0~6 岁人群中,2 岁以后,随着年龄的增加,VitD 水平逐渐降低,VitD 缺乏率逐渐升高。1~2 岁为 VitD 水平峰值阶段,VitD 缺乏率也最低,这与部分文献[14,16]报道一致。7~14 岁人群 VitD 水平明显低于 0~6 岁人群(P<0.05),随着年龄的增加 VitD 水平逐渐降低,VitD 缺乏率逐渐升高,并且升高的幅度愈来愈大。分析以上结果,原因可能为:(1) 3 岁以后,是人体骨骼快速生长时期,对 VitD 需要量增加。(2) 日光照射后在皮下合成是VitD 的主要来源。进入小学以后,学生的学习负担越来越重,户外活动减少,接受紫外线照射的量不足。这可能是导致 7~14 岁孩子 VitD 缺乏的重要原因之一。(3) 多数天然食物中VitD 含量较低,而中国人群很少摄入鱼肝油、奶油和奶酪等

VitD 含量相对较高的食物。(4)由于 VitD 缺乏性佝偻病好发于 $0\sim3$ 岁婴幼儿,国内预防性补充钙剂及 VitD 是自出生后数月至 $2\sim3$ 岁,3 岁以后基本上不补充 VitD。这可能也是造成 $3\sim14$ 岁人群 VitD 缺乏的重要原因之一。

美国儿科学会新发布的《婴幼儿及少年儿童 VitD 缺乏和佝偻病的预防》和医学会(IOM)推荐^[2,21],出生后数天开始补充 VitD 至青少年时期,剂量为 10 g/d。Vieth等^[22]在 2007 年就提出:"为了快速和明显地减少低 VitD 所引起的疾病的发生率,增加摄入 VitD强化食品或 VitD 补充剂是一个简单而成本又低的方法。"他们呼吁美国食品营养委员会(FNB)和欧盟的健康和消费者保护总会等国际营养机构,把重新估计 VitD 膳食参考摄入量(DRIs)作为高度优先处理的事项。中国营养学会建议我国儿童和成人的可耐受最高摄入量(UL)为 20 g/d。近期,有人呼吁能否考虑修订中国的 VitD 的 DRIs,将 UL 由 20 g/d 提高到 50 g/d。

目前,国际上评估 VitD 营养状况的标准不统一。部分学者提出的评估标准为(1) VitD 缺乏: \leq 10 ng/mL;(2) VitD 不足:10 ng/mL<VitD \leq 20 ng/mL;(3) VitD 正常:20 ng/mL<VitD \leq 30 ng/mL;(4) VitD 营养状况良好:>30 ng/mL $^{[6\cdot22\cdot25]}$ 。国外的研究已经证实:甲状旁腺素(PTH)与 VitD 呈负相关,当 VitD 维持在 30 \sim 40 ng/mL 时,PTH 不再升高;对 VitD<20 ng/mL 者持续补充一定量 VitD 后,PTH 明显降低;预防髋骨和非脊柱骨折 VitD 的阈值为 30 \sim 40 ng/mL;将绝经后妇女 VitD 水平从 20 ng/mL 提高到 32 ng/mL,小肠对钙的吸收率可提高到 45% \sim 65%。基于以上研究结果,IOM 将 VitD \leq 20 ng/mL 定义为 VitD 缺乏^[2]。国内许多文献[13-14,16-19]使用 IOM 的标准。所以,作者采用了 IOM 的评估标准。在比较不同人群 VitD 营养状况时,需要注意是否使用同一标准。

测定 VitD的方法有液相色谱-质谱联用法(LCMS/MS)、高效液相色谱法、放射免疫法、酶联免疫吸附试验(ELISA)和电化学发光法等。不同方法测定结果之间是否具有可比性,在比较不同人群 VitD 营养状况时也要考虑方法学这一因素。

综上所述,绵阳市 $0\sim14$ 岁人群 VitD 水平较低,随着年龄的增加 VitD 水平逐渐降低,VitD 缺乏率逐渐升高。6 岁以后 VitD 缺乏情况更加严重。因此,应该定期进行 VitD 营养状况的调查,增加孩子户外活动时间,及时补充 VitD。

参考文献

- [1] Holick MF. Vitamin D deficiency [J]. N Engl J Med, 2007, 357(3):266-281.
- [2] Holick MF, Binkley NC, Bischoff-Ferrari HA, et al. Evaluation, treatment, and prevention of vitamin D deficiency; an Endocrine Society clinical practice guideline[J]. J Clin Endocrinol Metab, 2011, 96(7):1911-1930.
- [3] Pramyothin P, Holick MF. Vitamin D supplementation: guidelines and evidence for subclinical deficiency[J]. Curr Opin Gastroenterol, 2012, 28(2):139-150.
- [4] Janssen HC, Samson MM, Verhaar HJ. Vitamin D deficiency, muscle function, and falls in elderly People[J]. Am J Clin Nutr, 2002, 75(4):611-615.
- [5] Holick MF, Binkley NC, Bischoff-Ferrari HA, et al. Guidelines for preventing and treating vitamin D deficiency and in-

- sufficiency revisited [J]. J Clin Endocrinol Metab, 2012, 97 (4):1153-1158.
- [6] Dawson-Hughes B, Heaney RP, Holick MF, et al. Estimates of optimal vitamin D status [J]. Osteoporos Int, 2005,16(7):713-716.
- [7] Foo LH, Zhang Q, Zhu K, et al. Low vitamin D status has an adverse influence on bone mass, bone turnover, and muscle strength in Chinese adolescent girls[J]. J Nutr, 2009, 139(5):1002-1007.
- [8] El-Khoury JM, Reineks EZ, Wang S. Progress of liquid chromatography-mass spectrometry in measurement of vitamin D metabolites and analogues[J]. Clin Biochem, 2011,44(1):66-76.
- [9] 周建烈,毛绚霞,顾景范.维生素 D 膳食参考摄入量的再评估[J]. 生理科学进展,2009,40(1):36-40.
- [10] Wang S. Epidemiology of vitamin D in health and disease [J]. Nutr Res Rev, 2009, 22(2):188-203.
- [11] Holick MF. Vitamin D status: measurement, interpretation, and clinical application[J]. Ann Epidemiol, 2009, 19 (2):73-78.
- [12] Admas JS, Hewison M. Update in vitamin D[J]. J Ciln Endocrinol Metab, 2010, 95(2):471-478.
- [13] 郝新忠,黄之杰,程莹,等. 成都市 0~6 岁儿童 25-羟维生素 D水平调查[J]. 中国妇幼保健,2013,28(5):819-822.
- [14] 叶莉莉,高玲娟,顾平清,等.南京市 2812 例 0~6 岁婴幼儿 25-羟维生素 D 检测分析[J].国际检验医学杂志,2012,33(16):1979-1980.
- [15] 王欲琦,王云双,靳艳茹,等. 学龄前儿童身体质量指数和维生素 D水平的关系[J]. 中国妇幼健康研究,2012,23 (6):709-710.
- [16] 田娟娟,于艳丽. 荣成地区 3260 名儿童血清 25-羟维生素 D水平调查[J]. 中国优生与遗传杂志,2010,18(9):122.
- [17] 徐炳燕,黎四平,彭琪. 东莞地区婴幼儿 25-羟维生素 D 检测结果分析[J]. 检验医学与临床,2013,10(6):762-763.
- [18] 张霞娟,鲍莉芳,鲍舟君,等. 儿童血清 25-羟维生素 D及 钙磷水平调查[J]. 浙江预防医学,2012,24(6):5-7.
- [19] 王学梅,郭素梅,杨薇,等. 北京市亚北地区 0~6 岁儿童 维生素 D营养状况调查分析[J]. 中国妇幼保健,2011,26 (21);3284-3286.
- [20] 赵静,张倩,张环美,等. 北京市怀柔区儿童维生素 D 营养 状况及其与体成分的关系[J]. 中华流行病学杂志,2010, 31(1);34-38.
- [21] Carol LW, Frank RG. The section on breastfeeding and committee on nutrition, prevention of rickets and vitamin D deficiency in infant, children, and adolescents[J]. J Pediatrics, 2008, 122(5):1142-1152.
- [22] Vieth R, Bischoff-Ferrari H, Boucher BJ, et al. The urgent need to recommend an intake of vitamin D that is effective [J]. Am J Clin Nutr, 2007, 85(3):649-650.

(收稿日期:2013-10-18 修回日期:2013-12-28)